9. RANDOM VARIABLE AND DISTRIBUTIONS

Quick Review

- 1. Let S be a sample space of a random experiment. A real valued function $X : S \rightarrow R$ is called a *random variable*.
- 2. Let X be a random variable on a sample space S. If $x \in R$ then we use the following symbols to denote some events in S.

 $i)\,\{a\,\in\,S:X(a)=x\,\}=(X=x)$

ii) $\{a \in S : X(a) < x\} = (X < x)$

iii) $\{a \in S: X(a) \leq x\} = (X \leq x)$

 $\text{iv)} \left\{ a \in S : X(a) > x \right\} = (X > x)$

- $v)\;\{a\in S: X(a)\geq x\}=(X\geq x)$
- 3. Let S be a sample space and $X : S \to R$ be a random variable. The function $F : R \to R$ defined by $F(x) = P(X \le x)$, is called *probability distribution function* of the random variable X.
- 4. A set A is said to be *countable* if there exists a bijection (one one onto function) from A onto a subset of N.
- 5. If A is countable set, then A can be represented as $A = \{x_1, x_2, x_3, ...\}$.
- 6. Let S be a sample space. A random variable $X : S \rightarrow R$ is said to be *discrete* or *discontinuous* if the range of X is countable.
- 7. If X : S \rightarrow R is a discrete random variable with range {x₁, x₂, x₃, ...}, then $\sum_{r=1}^{\infty} P(X = x_r) = 1$.
- 8. If X : S \rightarrow R is a discrete random variable with range {x₁, x₂, x₃, ...}, then {P(X = x_r) : r = 1, 2,...} is called *probability distribution* of X.
- 9. Let X : S → R is a discrete random variable with range {x₁, x₂, x₃, ...}. If Σ x_r P(X = x_r) exists, then Σ x_r P(X = x_r) is called the *mean* of the random variable X. It is denoted by μ or x̄. If Σ (x_r μ)² P(X = x_r) exists, then Σ (x_r μ)² P(X = x_r) is called *variance* of the random variable X. It is denoted by σ². The positive square root of the variance is called the *standard deviation* of the random variable X. It is denoted by σ.
- 10. Let X : S \rightarrow R be a discrete random variable with range {x₁, x₂, x₃, ...}. If μ , σ^2 are the mean and variance of X, then $\sigma^2 + \mu^2 = \Sigma x_r^2 P(X = x_r)$.
- 11. Let n be a positive integer and p be a real number such that $0 \le p \le 1$. A random variable X with range $\{0, 1, 2, ..., n\}$ is said to follow (or have) *binomial distribution* or *Bernoulli distribution* with parameters n and p, if $P(X = r) = {}^{n}C_{r}p^{r}q^{n-r}$ for r = 0, 1, 2, ..., n, where q = 1 p.
- 12. If the random variable X follows a binomial distribution with parameters n and p, then mean of X is np and the variance is npq, where q = 1 p.
- 13. Let $\lambda > 0$ be a real number. A random variable X with range $\{0, 1, 2, ...\}$ is said to follow (have) *Poisson distribution* with parameter λ , if $P(X = r) = \frac{e^{-\lambda}\lambda^r}{r!}$ for r = 0, 1, 2, ...

14. If a random variable X follows Poisson distribution with parameter λ , then mean of X is λ and variance of X is λ .